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Superconducting thin rings with finite penetration depth
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Recently Babaei Brojeny and Clem@Phys. Rev. B68, 174514~2003!# considered superconducting thin-film
rings in perpendicular magnetic fields in the ideal Meissner state with negligibly small magnetic penetration
depth and presented useful analytical limiting expressions and numerical results for the magnetic-field and
sheet-current profiles, trapped magnetic flux, self-inductance, magnetic moment, and focusing of magnetic flux
into the hole when no net current flows in the ring. The present paper generalizes all these results to rings with
arbitrary values of the two-dimensional effective penetration depthL5l2/d (l is the London depth andd
,l/2 the film thickness! using a straightforward matrix inversion method. We also present results for the
energy of a superconducting ring as a function of the applied magnetic inductionBa and the quantum number
N defining the size of the fluxoidNf0 trapped in the hole.
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I. INTRODUCTION

In a recent paper Babaei Brojeny and Clem1 calculated
the magnetic properties of superconducting thin-film rin
and disks in the ideally screening Meissner state whe
perpendicular magnetic field is applied. They showed t
the Biot-Savart law for the sheet-current densityJ(r )
5*2d/2

d/2 j (r ,z)dz ( j is the current density! in a circular disk of
thicknessd and radiusb with a hole of radiusa (0<a,b)
can be solved by a physical ansatz containing a factor@(r 2

2a2)(b22r 2)#21/2 describing the divergence ofJ(r ) at the
inner and outer radii. A plethora of useful numerical resu
and analytical limiting expressions is given in Ref. 1 f
several situations:~a! magnetic flux trapped in the hole whe
no magnetic field is applied;~b! zero magnetic flux in the
hole when the ring is subjected to an applied field; and~c!
focusing of the magnetic flux into the hole when a magne
field is applied but no net current flows around the ring.

Throughout the paper1 it was assumed that either the Lo
don magnetic penetration depth obeysl,d/2 or, if l
.d/2, the two-dimensional~2D! penetration depthL
5l2/d ~or screening length1 2l2/d) is negligibly small. The
same assumption was made in previous work on disks2–4 and
rings.5,6 However, while thin superconducting rings withl
50 ideally screen magnetic flux from penetrating the hole
finite l or L5l2/d.l will allow magnetic flux to penetrate
into the film as well as the hole. This effect is much strong
than would be suggested by the exponential factor exp@2(b
2a)/l# that applies to long tubes in an axial field.

The effect of finiteL is particularly important for the
interpretation of experiments that try to confirm the cosm
logical Kibble-Zurek mechanism7,8 of spontaneous formation
of vortices during rapid cooling of a superfluid; some
these experiments use superconducting rings,9 while others
use disks.10 Finite l also modifies flux focusing, an impor
tant feature of SQUIDs~superconducting quantum interfe
ence devices!, which usually have roughly the shape of
0163-1829/2004/69~18!/184509~12!/$22.50 69 1845
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washer with a small central hole but with a slit that allow
magnetic flux to enter the hole and causes zero net circu
ing current at the SQUID’s critical current.11–14The concen-
tration of magnetic flux into this hole increases the effect
area of the SQUID.

Small disks~or squares! and rings~or loops! with linear
dimensions of the order of a fewj(T), the temperature-
dependent Ginzburg-Landau coherence length, have b
studied theoretically using the Ginzburg-Landau theory
Refs. 15–23 and experimentally in Refs. 15,16,22. A non
ear theory such as the Ginzburg-Landau theory is neede
handle the conditions explored by these authors, i.e., w
the applied field is of the order of the bulk thermodynam
critical field Hc or the induced current density is of the ord
of the depairing current densityj d . In such situations the
order parameter is strongly suppressed and the electrom
netic response is highly nonlinear. In this paper, however,
use a different approach based on the London equation24 in
calculating the electromagnetic properties of a thin-film rin
We restrict our attention to applied fields much less thanHc
and induced current densities much less thanj d , such that
the electromagnetic response is linear. The advantage o
London approach is that it is valid for arbitrary temperatu
below the transition temperatureTc @one needs only to know
the temperature dependence of the London penetration d
l(T)] in contrast to the Ginzburg-Landau theory, which
valid only close toTc .

This paper is organized as follows. In Sec. II we descr
our calculation method, which applies to arbitraryL. In Sec.
III we compute the self-inductance of a thin flat ring. In Se
IV we calculate the response of a ring in an applied magn
field. In Sec. V we study the flux-focusing problem and c
culate the effective area. In Sec. VI we calculate the ene
of a ring as a function of the applied field and the quant
numberN describing the size of the fluxoidNf0 trapped in
the ring. In Sec. VII we give some analytical results for t
limit of large L@b, which applies to mesoscopic rings. W
present a brief summary in Sec. VIII.
©2004 The American Physical Society09-1
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II. CALCULATION METHOD

We assume for simplicity that current in a circular coil f
from the ring produces a vector potentialAa(r )5Aa(r )ŵ,
which describes the magnetic inductionBa5¹3Aa ; ŵ is
the azimuthal unit vector. Near the film in the planez50, we
assumeAa(r )5rBa/2, such that the magnetic induction a
plied to the thin-film ring isBa5Baẑ. In response to eithe
the applied field or a fluxoid trapped in the hole, currents
induced in the ring. The net magnetic induction isB(r )
5Ba(r )1BJ(r ), whereBJ(r )5“3AJ(r ) and its vector po-
tential AJ(r ) are generated by the currents in the film. B
cause of the circular symmetry, the sheet current in the
has only aw component,J(x,y)5J(r )ŵ. Similarly, the vec-
tor potentialA(x,y,z), defining the total magnetic inductio
B5“3A, has only aw component. In the film planez
50, we haveA(x,y,0)5A(r )ŵ and A(r )5Aa(r )1AJ(r ).
The current densityj is related toA via the London equation
j52As /m0l2, whereAs is the superfluid velocity expresse
in units of vector potential; hereAs5Asŵ with

As~r !5A~r !2F f /2pr . ~1!

The second term on the right-hand side is due to the grad
of the phase of the complex superconducting order par
eter. For a ring with a slit we treatF f as a free parameter t
be determined by boundary conditions, but for an unslit
ring F f corresponds to the London fluxoid,24 which is quan-
tized; i.e.,F f5Nf0, whereN is an integer andf05h/2e is
the superconducting flux quantum.

It is useful to divide the fields into two contributions,B
5B11B2 , A5A11A2 , j5 j11 j2 , J5J11J2, etc., where
the subscriptn51 indicates that it is driven by the fluxoi
@driving term D1(r )52F f /2pr and A1(r )5AJ1(r )], and
the subscriptn52 indicates that it is driven by the applie
field @driving term D2(r )5Aa(r ) and A2(r )5Aa(r )
1AJ2(r )]. The London equation for contributionn is

Jn~r !52@Dn~r !1AJn~r !#/m0L. ~2!

In this paper we will calculate the two contributions (n
51 and 2! to the magnetic fluxFn(a) through the hole, tota
flux Fn(b) through the ring, magnetic momentmn , and total
currentI n around the ring using the definitions

Fn~r !52pE
0

r

dr8 r 8Bn~r 8!52prAn~r !, ~3!

mn5pE
a

b

dr r 2Jn~r !, I n5E
a

b

dr Jn~r !. ~4!

The relation between the sheet currentJn(r ) and the vec-
tor potentialAJn(r ) it generates is obtained as follows. Fro
the Maxwell equation m0j5“3B5“3“3A52“

2A
~since here“•A50) we obtain the 3D Biot-Savart law fo
the current-generated partAJ(r ) of A:
18450
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AJ~r !5m0E d3r 8
j „r 8…

4purÀr 8u
~5!

with r5(x,y,z). Integrating this overz8 andw, noting thatj
flows only inside the film2d/2<z<d/2, one obtains in the
planez50 for each component:

AJn~r !5m0E
a

b

dr8Jn~r 8! Q~r ,r 8! ~6!

with the integral kernel

Q~r ,r 8!5E
0

pdw

2p

r 8cosw

~r 21r 8222rr 8cosw!1/2
. ~7!

This kernel may be written in terms of elliptic integrals, b
for transparency we prefer a fast direct numerical integrat
of Eq. ~7!; see also Refs. 2–5. High accuracy is achieved
substituting in the integralw5w(u)5pu2sin(pu) and inte-
grating over 0<u<1 using an equidistant grid foru, ui
5( i 21/2)/Nw , i 51,2, . . . ,Nw , Nw'30–60, with weights
wi5w8(u)/Nw5@12cos(pui)#p/Nw :

Q~r ,r 8!5E
0

p

dw f ~w!5E
0

1

du f@w~u!#w8~u!

'(
i 51

Nw

f @w~ui !# wi . ~8!

Writing Jn(r )5*dr8Jn(r 8)d(r 2r 8) and inserting Eq.~2!
into Eq. ~6!, we obtain

Dn~r !52m0E
a

b

dr8Jn~r 8!@Q~r ,r 8!1Ld~r 2r 8!#. ~9!

~For introduction of finitel into other geometries see Re
25.! Formally, the integral equation~9! may be solved for the
sheet currentJ(r ) by writing

Jn~r !52m0
21E

a

b

dr8Dn~r 8! K~r ,r 8!, ~10!

whereK(r ,r 8) is the inverse of the kernelQ(r ,r 8)1Ld(r
2r 8), defined by

E
a

b

dr8K~r ,r 8!@Q~r 8,r 9!1Ld~r 82r 9!#5d~r 2r 9!.

~11!

The inverse kernelK(r ,r 8) is easily calculated numerically
by introducing an appropriate gridr i with weightswi such
that the integral is approximated by a sum,

E
a

b

dr f ~r !'(
i 51

Nr

f ~r i ! wi . ~12!

High accuracy is achieved in the present case, where
integrated functionf (r ) may have infinities atr 5a and r
5b, by a grid that is very dense nearr 5a andr 5b. A good
such grid is found by the substitutionr 5r (u)5a1(b2a)
9-2
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3(10u2215u316u5), r 8(u)530(b2a)(u2u2)2, yielding
r i5r (ui), wi5r 8(ui)/Nr , with ui5( i 21/2)/Nr , i
51,2, . . . ,Nr , Nr'30–100. This grid defines the vecto
Jni5Jn(r i), Dni5Dn(r i), and the matrixQi j 5Q(r i ,r j ).
Equation~9! then becomes a sum~or matrix multiplication!:

Dni52(
j 51

Nr

~wiQi j 1Ld i j !m0Jn j . ~13!

This is inverted by

m0Jni52(
j 51

Nr

Ki j Dn j , ~14!

whereKi j is an inverse matrix:

Ki j 5~wiQi j 1Ld i j !
21 ~15!

~no summation overi; d i j 51 if i 5 j ; otherwised i j 50). The
matrix equation from which the total sheet current is det
mined for givenBa andF f thus reads explicitly:

m0J~r i !52(
j 51

Nr

Ki j S r j

2
Ba2

F f

2pr j
D . ~16!

Finally, one hint is required without which this method m
not work or is inaccurate. The matrixQi j has infinite diago-
nal termsQii , sinceQ(r ,r 8), Eq. ~7!, diverges logarithmi-
cally whenr approachesr 8. Namely, one has

Qi ,i 11'Q~r i ,r i1wi !'
1

2p
ln

r i

wi
. ~17!

This problem was dealt with in detail in Refs. 2 and 3, whe
the optimum choice of theQii was found first numerically2

and then analytically,3 e.g., from the condition that an infinit
disk ideally screens two coils separated by the disk. One
has the complete definition of the matrixQi j :

Qi j 5Q~r i ,r j !, iÞ j ,

Qii 5
1

2p S ln
16pr i

wi
22D . ~18!

In Eq. ~15! the diagonal term iswiQii 1L. Thus, whenL is
larger than the maximum value of the weightwi ~or the
spacing between grid points!, which is of order (b2a)/Nr ,
then the choice of theQii is not critical, and for the compu
tation of J(r ) one may even putQii 50. For smallL, how-
ever, the correct choice ofQii is important.

III. SELF-INDUCTANCE OF FLAT RINGS

According to Eq.~16! the current in a ring originates from
either an applied fieldBa , trapped flux related to the param
eterF f , or both. In this section we putBa50 and compute
the sheet currentJ1(r ) for finite trapped fluxoidF f . The
total currentI 1 is then given by Eq.~4!. The current gener-
ates a fluxF1(r )52prA1(r ), Eq. ~3!, with A1(r )5AJ1(r )
from Eq.~6!. Figure 1 shows the profiles of the sheet curre
J1(r ), perpendicular inductionB1(r )5(1/r )(rA1)8, and
18450
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vector potentialA1(r ) for a ring witha/b50.4 for threeL/b
values~0, 0.03, 0.1! for the case of flux trapping withBa
50 andF f.0. One can see that finiteL removes the in-
finities of J1(r ) at r 5a and r 5b @J1}(r 2a)21/2 and J1
}(b2r )21/2; see Ref. 1#, which lead to a similar infinity of
B1(r ). For L.0, J1(a) and J1(b) are finite, andB1(r )
penetrates the superconductor but still exhibits a logarith
infinity at r 5a and r 5b, which is caused by the abrup
jump of J1(r ) to zero. Note also that with increasingL the
total currentI 1, the magnetic fluxF1(a) in the hole, and the
field B1 in the hole decrease, while the London fluxoid
2pr @A1(r )1m0LJ1(r )#5F f remains constant.26

In the case of ideal screening, i.e., forL50, no magnetic
field penetrates the ring material, and thus the fluxF1(r ) is
the same for anyr between r 5a and r 5b. The self-
inductance of the ring may then be defined asL5F1 /I 1 with
F15F1(a)5F1(b). For small reduced inner radiusã
[a/b!1 the flux trapped in the hole was found by Clem1,11

to be F1(a)52m0aI1; thus the inductanceL5F1 /I 1 ap-
proachesL052m0a. In the opposite limit, for narrow rings
with ã→1, L approaches1,5

L15m0R@ ln~8R/w!221 ln 4#

5m0b~11ã!~ tanh21ã211 ln 4! ~19!

@R5(a1b)/2, w5b2a#. For arbitraryã, but still L50, L
was computed in Ref. 1, where a useful empirical form
was presented,

L25m0b@ ã20.197ã220.031ã61~11ã!tanh21ã#.
~20!

FIG. 1. Profiles of sheet currentJ1(r ) in the ring, perpendicular
magnetic inductionB1(r )5(1/r )(rA1)8, and current-generated
vector potentialA1(r )5AJ1(r ) in the plane of the ring for the cas
of trapped flux and zero applied field (Ba50, F f.0, Figs. 1–6!.
The hole radius isa50.4b and the 2D penetration depth isL50
~solid curves!, L50.03b ~dot dashed!, andL50.1b ~dashed!. Plot-
ted are the dimensionless quantitiesJ1 /(F f /m0b2), B1 /(F f /b2),
and 2A1 /(F f /b).
9-3



its

et

f

e

co
is

e

w

tex
rce

ram-
e

ne

es
r
-

e

,

-

,

g

,

ERNST HELMUT BRANDT AND JOHN R. CLEM PHYSICAL REVIEW B69, 184509 ~2004!
This fit is confirmed by our method, as shown in Fig. 2;
relative deviation from the exactL ranges from20.005% to
10.06%.

When the effective penetration depthL is finite, the mag-
netic field penetrates into the ring material, and the magn
flux F1(r ) is no longer constant whenr changes fromr
5a to r 5b. The definition ofL5F1 /I 1 via magnetic flux is
thus not unique; in particular,F1(a)/I 1ÞF1(b)/I 1 when
L.0. In this general case one must use the definition oL
via the electromagnetic energy of the ring,E5(1/2)LI 1

2.
This energy is composed of the magnetic energyEm and the
kinetic energyEk of the currents, as is evident from th
energy integral of London theory:

E5Em1Ek5
m0

2 E d3r ~H1
21l2j1

2!, ~21!

with H15m0
21B1 and j15“3H1. The integral~21! over all

space can be transformed into an integral over the super
ductor by introducing the vector potential. For a flat ring th
yields

E5Em1Ek5pE
a

b

dr r @J1~r !A1~r !1m0LJ1~r !2#.

~22!

From the two energy terms whenBa50 one may define the
geometric inductanceLm52Em /I 1

2 and the kinetic induc-
tanceLk52Ek /I 1

2, yielding the total self-inductanceL5Lm

1Lk52E/I 1
2. The energyE, Eq.~22!, may also be written as

E5Em1Ek5~1/2!F f I 1 , ~23!

FIG. 2. Computed self-inductanceL5F f /I 1 of a superconduct-
ing thin flat ring with hole radiusa and outer radiusb, plotted in
units of m0a for 2D penetration depthsL50.001, 0.01, 0.03, 0.1
and 0.3 in units ofb. Note that even very smallL!b considerably
enhances the inductance of rings with a small central hole (a/b
!1) as compared with the caseL50. The circles depict the em
pirical expression~20! valid for L50; they perfectly coincide with
the dots that mark the curve computed forL50. The dashed curve
shows the limiting expressionL1, Eq. ~19!. See also Fig. 6 below
showing the inverse self-inductancem0a/L.
18450
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where F f52pr (A11m0LJ1)5const ~for a<r<b) is the
London fluxoid.24,26 We may derive Eq.~23! from Eq. ~22!
by noting that the constant combination 2pr (A11m0LJ1)
5F f can be factored out of the integrand.

From Eq.~23! and the definitionE5(1/2)LI 1
2 it immedi-

ately follows that:

L5F f /I 1 . ~24!

This general result, valid for arbitrary penetration depthL,
differs from the definition used previously1 for L50, in that
the magnetic fluxF1(a) through the hole is replaced by th
fluxoid F f , which coincides with the fluxF1(a) in the hole
only in the special caseL50.

Equation~23! also may be derived by considering ho
the fluxoid in the ring may be increased from zero toF f by
moving vortices~Pearl vortices27–29 of short lengthd) from
the outer radius through the ring into the hole. Each vor
has to cross the current-carrying ring, where a Lorentz fo
f0J1(r ) acts on it. Integrating this force fromr 5b to r
5a, one obtains the energyf0I 1. Each crossing vortex in-
creases the phase change of the superconductor order pa
eter around a circle in the ring by 2p and thus increases th
fluxoid by f0. Noting that the total currentI 1 is proportional
to the number of vortices that already are in the hole, o
obtainsE5(1/2)F f I 1, Eq. ~23!.

Figure 2 shows the inductanceL5F f /I 1 for various ra-
tios L/b50, 0.001, 0.01, 0.03, 0.1, and 0.3. The circl
show the fit~20!, which is an excellent approximation fo
L50 and all hole radiia. Note thatL increases with increas
ing penetration depthL. Even smallL/b50.001 noticeably
enhancesL of rings with a small hole. Figure 3 shows th
magnetic flux in the hole,F1(a)52paA1(a), referred to
the fluxoidF f trapped in the ring. Note thatF1(a) may be
much smaller thanF f even for smallL/b. A similar plot,

FIG. 3. Magnetic fluxF1(a) in the hole of a superconductin
thin flat ring with hole radiusa and outer radiusb for the trapped-
flux case as in Figs. 1–6~applied fieldBa50 and fluxoidF f.0)
for 2D penetration depthsL/b50, 0.0001, 0.001, 0.01, 0.03, 0.1
0.3, 1, 3, and 10. The dots on some of the curves mark thea/b grid
used here in all such figures.
9-4
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Fig. 4, shows the minimum field in the hole,B1(0), occur-
ring at the center r 50 ~cf. Fig. 1! plotted as
2pa2B1(0)/F f . These curves look qualitatively similar t
F1(a)/F f in Fig. 3. For L50 and a!b one has
2pa2B1(0)/F f→1.

The magnetic momentm1 of this ring ~still for Ba50 and
F f.0) is depicted in Fig. 5 as the dimensionless ratioam
5m0m1 /bFf ; for further approximations to these curves s
the dotted and dot-dashed curves in the similar Fig. 12
low. The total currentI 1 times the inner radiusa is depicted
in Fig. 6 as the dimensionless ratioa I5m0aI1 /F f . Actually
Fig. 6 shows the same data as Fig. 2, but inverted, since

FIG. 4. Minimum of the magnetic fieldB1(0) occurring in the
center of the ring for the trapped-flux case (Ba50 and F f.0)
plotted as 2pa2B1(0)/F f for L/b50, 0.0001, 0.0003, 0.001
0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10. The dashed curves sho
large-L approximation, Eq.~41!, for L/b51, 3, and 10.

FIG. 5. Magnetic momentm1 of a superconducting thin flat ring
with inner and outer radiia and b for the trapped-flux case (Ba

50 and F f.0) plotted as the dimensionless ratioam

5m0m1 /bF f for L/b50, 0.001, 0.01, 0.03, 0.1, 0.3, 1, 3, and 1
The dashed curves show the large-L approximation, Eq.~42!, for
L/b51, 3, and 10. See also Fig. 12 below.
18450
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plotted quantitym0aI1 /F f equalsm0a/L; however, Fig. 6
shows the entire range 0<L<`.

IV. ZERO-FLUXOID STATE

This section considers the zero-fluxoid state reached w
a thin superconducting ring is slowly cooled in zero field.
magnetic fieldBa5m0Ha is then applied, but the fluxoidF f
in the ring then remains zero. WhenL50, one has ideal
screening, such that the magnetic fluxF(a) in the hole is
zero. For finiteL.0 the screening is incomplete, some flu
leaks through the ring, and the fluxF(a) in the hole is no
longer zero. In this section we therefore putBa.0 andF f
50 in our numerics. Figure 7 shows for this case the profi
of J2(r ), B2(r ), and A2(r ) for a ring with a/b50.4 for
L/b50, 0.03, and 0.1. Note that the inductionB2(r )
changes sign inside the hole and has a negative infinity a
inner edger 5a and a positive infinity at the outer edger
5b. For L50 the integral ofB2(r ) over the hole area is
F2(a)50, but forL.0 the fluxF2(a).0.

Figure 8 shows the penetrated fluxF2(a) in units of its
maximum valuepa2Ba reached in the limit ofL@b, and
Fig. 9 shows the field maximumB2(0) occurring at the cen-
ter r 50 of the ring. BothF2(a) andB2(0) increase mono-
tonically with both a and L, but while B2(0) at smalla
increases linearly with the radiusa, the penetrated flux
F2(a) at smalla and smallL has negative curvature; se
bottom of Fig. 8. The penetrated fluxF2(a)/pa2Ba
'B2(0)/Ba in the limit of small hole radiusa/b!1 is de-
picted in Fig. 10 as a function ofL/b. This curve is well
fitted by

F2~a!

pa2Ba
'

B2~0!

Ba
'

1

2
1

1

2
tanhS 2.88 ln

L

b
20.675D . ~25!

the

FIG. 6. Total currentI 1 in the flat ring with trapped flux (Ba

50 andF f.0) plotted as the dimensionless ratioa I5m0aI1 /F f

5m0a/L for L/b50, 0.0001, 0.001, 0.01, 0.03, 0.1, 0.3, 1, 3, a
10. Same data as in Fig. 2 but inverted. The dashed curves show
large-L approximation, Eq.~40!, for L/b51, 3, and 10.
9-5
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Figure 11 shows the magnetic momentm2 of the ring in
units of m052(8/3)b3Ha , which is reached for ideally
screening disks (a5L50);2,30 the dimensionless ratio plot
ted isbm5m/m0. For L50 anda→b one has the limit5

m2

m0
5

3p2

128

~11a/b!3

tanh21~a/b!211 ln 4
. ~26!

Figure 12 shows the total currentI 2 in the ring induced by
the applied field, expressed in terms of the dimension
ratio b I52I 2 /bHa . The limits forL50 are1,5

I 252~4/p!b Ha for a→0,

I 252
~p/4!~a1b!Ha

tanh21~a/b!211 ln 4
for a→b. ~27!

Note that the curves in Fig. 12 exactly coincide with t
curves in Fig. 5, even though they depict different physi
quantities for different cases. This identity,am5b I , can be
proved by evaluating the sum of energy integralsF12
5*d3rB1•B2 /m01*d3rm0l2j1• j2, where the first integra
extends over all space, including the coil producing the
plied fieldBa , and the second integral extends only over
volume of the ring. With the help of the vector identi
“•(A3B)5B•“3A2A•(“3B) with A5A2 and B
5B1, the divergence theorem, and Eq.~2! with n52, we
can show thatF1250. Then, using the same vector identi
but with A5A1 and B5B2, the divergence theorem, Am
pere’s law, and Eqs.~2!, ~4!, ~6!, and ~7! with n51, we
obtain F125m1Ba1F f I 250, which yields am
5m0m1 /bF f52m0I 2 /bBa5b I . This also can be proved
by insertingJ1 andJ2 of Eq. ~10! into the definitions~4! of
m1 and I 2, renaming the variablesr↔r 8, and noting the

FIG. 7. Profiles of sheet currentJ2(r ) in the ring, perpendicular
magnetic inductionB2(r )5(1/r )(rA2)8, and vector potentialA2(r )
in the plane of the ring for the zero-fluxoid state in a finite appl
field (Ba.0, F f50, Figs. 7–12!. The hole radius isa50.4b and
the 2D penetration depth isL50 ~solid curves!, L50.03b ~dot-
dashed!, or L50.1b ~dashed!, as in Fig. 1. Plotted are the dimen
sionless quantitiesJ2 /Ha , B2 /Ba , and28A2 /bBa .
18450
ss
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FIG. 8. Magnetic fluxF2(a) in the hole of a flat ring when
Ba.0 andF f50 in units ofpa2Ba for L/b50, 0.0001, 0.0003,
0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10. The bottom
shows the same data ten times enlarged.

FIG. 9. Magnetic fieldB2(0) at the centerr 50 of a thin flat
ring whenBa.0 andF f50 in unitsBa for L/b50, 0.0003, 0.001,
0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10. The dashed curves sho
large-L approximation, Eq.~43!, for L/b51, 3, and 10.
9-6
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symmetry ofK(r ,r 8)5K(r 8,r )(r 8/r ) defined by Eq.~11!.
This symmetry follows from the symmetry ofQ(r ,r 8)
5Q(r 8,r )(r 8/r ) defined by Eq.~7!, from Eq. ~11! noting
that (r 9/r ) d(r 2r 9)5d(r 2r 9), and from the additiona
property of the inverse kernel that*a

bdr8@ Q(r 9,r 8)
1Ld(r 92r 8)#K(r 8,r )5d(r 92r ).

V. FLUX FOCUSING

This section considers a ring that is in a perpendicu
magnetic fieldBa and contains a fluxoidF f chosen such tha
no net current circulates around the ring. This circularly sy
metric situation approximates a ring with a narrow slit alo

FIG. 10. Penetrated flux in thin flat rings with small hole radi
a!b for Ba.0, F f50, plotted vsL/b as F2(a)/pa2Ba ~dots!,
which in this limit is nearly equal toB2(0)/Ba ~solid curve! and is
well approximated by Eq.~25!, shown as the dashed curve.

FIG. 11. Magnetic momentm2 of a thin flat ring whenBa.0
andF f50, plotted as the dimensionless ratiobm5m2 /m0, where
m052(8/3)Hab3 for L/b50, 0.001, 0.01, 0.03, 0.1, 0.3, 1, 3, an
10. The dot-dashed curve shows the limitb→a, Eq. ~26!. The
dashed curves show the large-L approximation, Eq.~44!, for L/b
51, 3, and 10.
18450
r
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one of its radii as proposed by Clem.1,11 It neglects both the
magnetic flux in the slit and the effects of the radial curre
that flow in opposite directions alongside the slit. Compu
tions of thin-film squares and disks with and without sl
based on the 2D method presented in Ref. 25, show that
1D approximation is good, yielding magnetic field values
the hole that are larger by typically 10% or less.

The slit interrupts the currentI and allows magnetic flux
to penetrate into the hole such that the conditionI 50 holds.
When Ba is increased with ramp ratedBa /dt, a voltageU
appears across the slit at radiusr, U52dF f /dt5
2(dBa /dt)Aeff , whereAeff5F f /Ba is the effective area of
the slitted ring. In our approximation of a circularly symme
ric ring the fluxoid F f is given by F f52pr @(r /2)Ba
1AJ(r )1m0LJ(r )# for any r in the superconductor,a<r
<b, and it equals the parameterF f entering Eq.~2!. In a
superconductor without a slit,F f5Nf0 is quantized, with
integerN. When the ring has a radial slit, it may be used
construct a dc SQUID by connecting the two banks of the
to a superconducting current lead via two identical sm
Josephson junctions, each with maximum supercurr
I 0.12,13 The critical current of the resulting dc SQUID is

I c52I 0ucos~pBaAeff /f0!u, ~28!

where the effective area isAeff5F f /Ba . Note that the effec-
tive area can be calculated asAeff5F(a)/Ba ~as in Ref. 1!
only in the limit L50, when the magnetic fluxF(a) in the
hole of the ring is exactly equal to the fluxoidF f . The term
‘‘flux focusing’’ is appropriate becauseAeff is always larger
than the actual area of the hole (pa2), regardless of the
value of L; moreover,Aeff is always in the rangepa2

,Aeff,pb2.

FIG. 12. Total currentI 2 in a thin flat ring whenBa.0 and
F f50 for L/b50, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 1
plotted as the dimensionless ratiob I52I 2 /bHa . The dotted and
dot-dashed curves show the limits, Eq.~27!. Note that the curves of
b I52I 2 /bHa agree exactly with those in Fig. 5,am

5m0m1 /bF f , although they describe different physical quantitie
The dashed curves show the large-L approximation, Eq.~45!, for
L/b51, 3, and 10.
9-7
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When L50, one has the limits1 Aeff /(pa2)5
(8/p2)(b/a) for a!b and Aeff /(pa2)511(12a/b) for a
→b. A good fit valid for all a in the range 0,a,b is ~see
Fig. 14!

Aeff /~pa2!51/$ã@11~p2/821!~12ã!2#%, ~29!

with ã5a/b. Values ofAeff obtained from this expressio
deviate by less than 0.5% from theL50 calculations of Ref.
1.31 In the limit of largeL@b ~which may be applicable to
mesoscopic rings9,32,33! one has@see Eq.~46! below#

Aeff /~pa2!5~b22a2!/@ 2a2ln~b/a!#, ~30!

which is already closely approached forL/b>1 ~see Fig.
14!.

The condition thatI 5I 11I 250 ~or I 252I 1) yields
Aeff5abb I /a I , whereb I52m0I 2 /bBa , shown in Fig. 12,
was computed in Sec. IV anda I5m0aI1 /F f , shown in Fig.
6, was computed in Sec. III. Figure 13 shows the profiles
J(r ), B(r ), andA(r ) for the case of flux focusing in a ring
with a/b50.4 forL/b50, 0.03, and 0.1. Note that the she
currentJ(r ) changes sign inside the superconductor and
zero integral,I 50. As in Figs. 1 and 7, whenL50, J(r )
has inverse square-root infinities atr 5a and r 5b, which
were treated in Ref. 1, but forL.0, J(a) and J(b) have
finite values.

In Fig. 14 the reciprocal of the effective areaAeff is plot-
ted in the formpab/Aeff , such that the data for all values o
the penetration depth 0<L/b<` can be presented in on
plot. The curve forL50 is well fitted by a parabola, Eq
~29!, ranging fromp2/8 at a/b→0 to 1 at a/b→1. The
limiting curve for L/b@1, Eq. ~30!, is practically reached
already whenL/b exceeds unity. The main message fro

FIG. 13. Profiles of sheet currentJ(r ) in the ring, perpendicular
magnetic inductionB(r )5(1/r )(rA)8m and vector potentialA(r )
in the plane of the ring for the case of zero total currentI 50 ~flux
focusing, Figs. 13–17!. The hole radius isa50.4b and the 2D
penetration depths areL50 ~solid curves!, L50.03b ~dot dashed!,
or L50.1b ~dashed!, as in Figs. 1 and 7. Plotted are the dimensio
less quantitiesJ/Ha , B/Ba , and24A/bBa .
18450
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this plot is thatAeff increaseswith increasingL for any
given a/b, and that forLÞ0, Aeff /pab diverges when
a/b→0, while forL50 it tends to the finite value 8/p2. For
L/b,0.03, Aeff /pab has a minimum~sincepab/Aeff has a
maximum! as a function ofa/b.

Figures 15, 16, and 17 show the magnetic fluxF(a) in
the hole of the ring plotted asF(a)/pabBa , the magnetic
field B(0) in the center of the ring plotted as@B(0)/Ba#
3(a/b), and the magnetic momentm/m0 of the ring for the
flux-focusing caseI 50. All three quantities decrease wit
increasingL/b.

VI. RING ENERGIES

The energy of a superconducting ring withL@b was cal-
culated in Ref. 33 as a function of the fluxoid numberN and

-

FIG. 14. Reciprocal of the effective areaAeff5F f /Ba of a thin
flat ring with I 50 ~flux focusing! plotted as (pab)/Aeff vs the
radius ratioa/b for penetration depthsL/b50, 0.0001, 0.0003,
0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10. The circles mark
parabolic fit, Eq.~29!, and the dots nearly coinciding with th
curvesL/b53 and 10 show the limitL→`, Eqs.~30!, ~47!.

FIG. 15. Magnetic fluxF(a) in the hole of a thin flat ring with
I 50 ~flux focusing! plotted asF(a)/pabBa vs a/b for L/b50,
0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10
9-8
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SUPERCONDUCTING THIN RINGS WITH FINITE . . . PHYSICAL REVIEW B 69, 184509 ~2004!
the applied magnetic inductionBa . Using the results of the
previous sections, we are able to calculate the energy
thin ring (d,l) with inner and outer radiia andb for any
value ofL. The authors of Ref. 33 also calculated, assum
L@b, the energy barriers between statesN andN61 asso-
ciated with the energy cost of moving a vortex or antivort
between the inner and outer radii. However, to extend s
calculations to the case of arbitraryL is beyond the scope o
our paper.

We begin by calculating the total electromagnetic ene
of the ring-coil system, where the coil produces a perp
dicular magnetic inductionBa at the ring,

E5E d3rB2/2m01E d3rm0l2j2/2. ~31!

FIG. 16. Magnetic inductionB(0) in the center of a thin flat
ring with I 50 ~flux focusing! plotted as@B(0)/Ba#(a/b) vs a/b
for L/b50, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and
The dashed curves show the large-L approximation, Eq.~48!, for
L/b50.3, 1, 3, and 10.

FIG. 17. Magnetic momentm of a thin flat ring whenI 50 ~flux
focusing! in units ofm052(8/3)Hab3 for L/b50, 0.0003, 0.001,
0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10. The dashed curves sho
large-L approximation, Eq.~49!, for L/b50.3, 1, 3, and 10.
18450
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The hole contains the fluxoidF f5Nf0, andB5Ba1BJ , as
discussed in Sec. II. The first integral, which extends over
space, is the total magnetic-field energy, and the second
tegral, which extends only over the volume of the ring, is t
total kinetic energy of the supercurrents. Using the vec
potential, the divergence theorem, and Eqs.~2! and ~4!, we
obtain

E5Ea1mBa/21Nf0I /2, ~32!

whereEa5*d3rBa
2/2m0 is the applied field’s magnetic en

ergy in the absence of the ring,m5m11m2 is the total mag-
netic moment of the ring, andI 5I 11I 2 is the total current
around the ring. When the coil currents are controlled so
to maintain the magnetic inductionBa applied to the ring, the
relevant energy is the Gibbs free energy, which we define
GN(Ba)5Ea1gN(Ba)5E2W, whereW5mBa is the work
done by the power supply in bringing up the magnetic m
ment to its final valuem. Thus

gN~Ba!52mBa/21Nf0I /2. ~33!

Eliminating m and I in favor of the quantities we have de
fined and calculated in Secs. II–V@m15bNf0am /m0 , m2
52(8/3)b3Habm , I 15Nf0a I /m0a, I 252bHab I , L
5m0a/a I , andb I5am], we may expressgN(Ba) in a form
equivalent to that given in Ref. 33 for the case in which the
are no vortices in the annular regiona,r ,b:

gN~Ba!5e0@~h2N!21gh2#. ~34!

The characteristic energy ise05f0
2/2L5f0

2a I /2m0a. As
can be seen most clearly from Fig. 2, for given values oa
andb, e0 decreases monotonically asL increases from zero
to ` ~see Sec. VII!; accordingly,e0 is a monotonically de-
creasing function of temperature.

The reduced field in Eq.~34! is h5Ba /B0, where the
scaling field isB05f0 /Aeff , with Aeff5abb I /a I . SinceB0
is proportional to the reciprocal ofAeff , shown in Fig. 14, we
see thatB0 decreases from its largest value whenL50 to its
smallest value whenL5`. While B0 is a monotonically
decreasing function of temperature, the range of val
spanned byB0 is large only for smalla/b; in a narrow ring
for which a→b, we findB0→f0 /pb2, independent ofL.

The constantg in the second term of Eq.~34!, obtained as
g5x2158bbma I /3aam

2 21, is shown in Fig. 18. This
N-independent quadratic term is relatively unimportant, ho
ever, because it is only the first term on the right-hand side
Eq. ~34! that determines which quantum stateN has the low-
est energy. Figure 19 exhibits a plot of (h2N)2 vs h
5Ba /B0 for several values ofN. From this plot we can see
clearly that the stateN has the lowest energy for values ofh
in the rangeN21/2,h,N11/2. When h5N21/2, the
statesN andN21 have the same energy; similarly, whenh
5N11/2, the statesN andN11 have the same energy.

The temperature dependence ofB05f0 /Aeff leads to the
possibility that the energetically favored value ofN may be
higher close toTc , whereL diverges, than at lower tempera
tures, whereL is much smaller. This effect, which may hav
important consequences for experiments using small su

0.

the
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conducting rings, is greatest whena/b is small. For example
suppose thata50.1b. At high temperatures for whichL/b
.1, we see from Fig. 14 thatAeff'0.2pb2, such thatB0
'5f0 /pb2. In an applied field ofBa'3f0 /pb2, h'0.6,
and the energetically favored state isN51. If at low tem-
peraturesL/b,0.01, thenAeff'0.1pb2, about half that at
high temperatures. Since the corresponding value ofB0 is
then about twice that at high temperatures,h'0.3, and the
quantum number for the state with the lowest energy
comesN50.

We emphasize that Eq.~34! gives the energy of a ring
with fluxoid numberN in the hole when there areno vortices
in the annular regiona,r ,b. It also states that the ene
getically favored value ofN is approximately equal toBa /B0

FIG. 18. Coefficientg of h25(Ba /B0)2 in the N-independent
part of the energy of a superconducting ring in an applied field@see
Eq. ~34!#, plotted as 1/(g11)51/x to show the entire range of 0
<a/b<1. The dots mark the limitL→`, Eq. ~51!.

FIG. 19. N-dependent part of the energy of a superconduct
ring in an applied field@see Eq.~34!#, plotted as (h2N)2 vs the
reduced fieldh5Ba /B0.
18450
-

and hence increases asB0 increases. However, since the in
tervortex spacing for an infinite thin film in an applied ma
netic inductionBa is of the order of (f0 /Ba)1/2, we expect
that it will first become energetically favorable for a vorte
to sit in the middle of the annular region, rather than to en
the hole and increase the value ofN, when Ba5Bc1
'f0 /w2, wherew5b2a. As pointed out in Ref. 33, for
narrow rings @w!(b2a)# when L/b@1, Bc1
'(2f0 /pw2)ln(2w/pj), wherej is the coherence length o
vortex-core radius.

VII. LIMIT OF LARGE PENETRATION DEPTH

In the limit L/b@1, which can be realized in small me
soscopic rings,9,32,33 analytic expressions for many of th
quantities of interest can be obtained from perturbat
theory. To lowest order in the small parameterb/L, we may
neglect the current-generated contributionAJ to the vector
potentialA in the London equation. From Eqs.~1! and~2! we
thus obtain the sheet-current densityJ:

J~r !5
1

m0L S F f

2pr
2

1

2
rBaD . ~35!

From Eqs.~4! and the Biot-Savart law we then obtain th
magnetic momentm, total currentI, and magnetic induction
at the center of the holeb(0) generated by this current:

m5
p

m0L F F f

4p
~b22a2!2

Ba

8
~b42a4!G , ~36!

I 5
1

m0L F F f

2p
lnS b

aD2
Ba

4
~b22a2!G , ~37!

b~0!5
1

2L F F f

2p

~b2a!

ab
2

Ba

2
~b2a!G . ~38!

For the caseBa50 andF f.0, the self-inductanceL is
obtained from Eqs.~24! and ~37!. ExpressingL in terms of
the same ratio as shown in Fig. 2, we obtain

L

m0a
5S L

b D 2p

~a/b!ln~b/a!
. ~39!

The inverse self-inductance, expressed as the dimension
ratio shown in Fig. 6, is

a I5
m0I 1a

F f
5

m0a

L
5

1

2p S b

L D S a

bD lnS b

aD . ~40!

Expressing the magnetic fieldB1(0) at the center of the ring
in terms of the same ratio as plotted in Fig. 4, we obtain

2pa2B1~0!

F f
5

1

2 S b

L D S a

bD S 12
a

bD . ~41!

The magnetic momentm1 expressed as the same dimensio
less ratio plotted in Fig. 5 is

am5
m0m1

bF f
5

1

4 S b

L D F12S a

bD 2G . ~42!

g
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For the zero-fluxoid case, we obtain the magnetic ind
tion B2(0) at the center of the ring by settingF f50 and
addingBa to Eq. ~38!. Expressing the result in terms of th
same ratio as plotted in Fig. 9, we obtain

B2~0!

Ba
512

1

4 S b

L D S 12
a

bD . ~43!

The corresponding magnetic moment is obtained from
~36! with F f50. Expressing the result in terms of the sam
dimensionless ratio as plotted in Fig. 11, we obtain

bm5
m2

m0
5

3p

64 S b

L D F12S a

bD 4G . ~44!

The total current in the ring is obtained from Eq.~37!, again
with F f50. Expressing the result in terms of the same
mensionless ratio as plotted in Fig. 12, we obtain

b I52
I 2

bHa
5

1

4 S b

L D F12S a

bD 2G . ~45!

This result is the same as that in Eq.~42!, as expected from
the identityam5b I , proved earlier.

For the case of flux focusing, we obtain the effective a
Aeff5F f /Ba by settingI 50 in Eq. ~37!. The result is

Aeff5ab
b I

a I
5

p~b22a2!

2 ln~b/a!
. ~46!

ExpressingAeff in terms of the same ratio as plotted in Fi
14, we obtain

pab

Aeff
5p

a I

b I
5

2~a/b!ln~b/a!

12~a/b!2
. ~47!

The corresponding magnetic induction at the center of
ring B(0) is obtained by addingb(0) @Eq. ~38!# to Ba but
using Eq. ~37! and I 50 to eliminateF f . Expressing the
result in terms of the same ratio as plotted in Fig. 16,
obtain

B~0!

Ba

a

b
5

a

b
1

1

4 S b

L D S 12
a

bD F ~12a2/b2!

2 ln~b/a!
2

a

bG . ~48!

The corresponding magnetic momentm is obtained from Eq.
~36!, using Eq.~37! and I 50 to eliminateF f . Expressing
the result in terms of the same ratio as plotted in Fig. 17,
obtain

m

m0
5

3p

64 S b

L D F12S a

bD 2GF11S a

bD 2

2
~12a2/b2!

ln~b/a! G .
~49!
18450
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Finally, we calculate the quantities of interest for ring e
ergies, discussed in Sec. VI. WhenL/b@1, the characteristic
energy,e05f0

2/2L5f0
2a I /2m0a, becomes@see Eq.~40!#

e05
f0

2ln~b/a!

4pm0L
, ~50!

which agrees with that found in Ref. 33, allowing for th
different system of units and definition ofL used there. For
large L, the quantityg5x2158bbma I /3aam

2 21 appear-
ing in Eq. ~34! becomes

g5
11~a/b!2

12~a/b!2
ln~b/a!21, ~51!

in agreement with Ref. 33.
Although the results presented in this section should ap

only when L/b@1, comparison of the above expressio
with the numerical results show that they provide good
proximations already whenL/b51 and yield excellent re-
sults whenL/b>3.

VIII. SUMMARY

In this paper we presented a straightforward matr
inversion method for the solution of the sheet current, vec
potential, and magnetic field generated by a thin-filmd
,l/2) superconducting ring~inner and outer radiia andb)
containing a trapped fluxoidF f in a perpendicular applied
magnetic inductionBa for values ofL5l2/d ranging from
zero to infinity. We used this method to calculate magne
field, current-density, and vector-potential profiles and n
merous related physical quantities for three important ca
~i! F f.0 but Ba50 ~trapped fluxoid, indexn51), ~ii ! Ba
.0 but F f50 ~zero-fluxoid state, indexn52), and ~iii !
F f.0 andBa.0 but no net current around the ring~flux
focusing!. We also calculated the Gibbs free energy of t
ring as a function of the quantum numberN, where N
5F f /f0, and the applied magnetic inductionBa when no
vortices are present in the annular region betweena andb.
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